Imaging plays a role in the anatomic assessment of the airway and adjacent structures. Obstructive sleep-disordered breathing (OSDB) is not diagnosed with imaging, but imaging can identify patients with airways who are at risk for obstruction and other anatomic characteristics that may contribute to OSDB. The airway extending from the tip of the nose to the superior end of the trachea can be visualized on conventional computed tomography (CT) and cone beam CT (CBCT) scans. Because these scans also include the jaws, teeth, cranial base, spine, and facial soft tissues, there is an opportunity to evaluate the functional and developmental relationships between these structures. The skeletal support for airway is provided by the cranial base (superiorly), spine (posteriorly), nasal septum (anterosuperiorly), jaws, and hyoid bone (anteriorly). The airway valves include the soft palate, tongue, and epiglottis (Fig. 1). Airway obstructions or encroachments are of interest because they increase airway resistance that may contribute to OSDB; therefore, visualization and calculation of the airway dimensions are important. Common airway encroachments include turbinates, adenoids, long soft palate, large tongue, and pharyngeal and lingual tonsils. Less common airway encroachments include polyps and tumors.

This article discusses the use of 3-dimensional (3D) imaging (CBCT) to evaluate the airway and selected regional anatomic variables that may contribute to OSDB. Optimal treatment outcomes begin with a complete and accurate diagnosis. Imaging may assist in delineating attributes that contribute to OSDB in patients who do not have a phenotype (such as high body mass index) that is routinely associated with OSDB.
Technological advances in computing power, sensor technology, and reconstruction algorithms have merged and resulted in the introduction of a CBCT (also known as volumetric imaging). Volumetric imaging is synonymous with 3D imaging because the information has depth in addition to height and width. The 3D imaging domain includes radiograph (CT and CBCT) and magnetic resonance imaging technologies. The 2 principal differences that distinguish CBCT from traditional CT are the type of imaging source-detector complex and the method of data acquisition. The radiograph source for CT is a high-photon, output rotating anode generator, whereas for CBCT it can be a low-energy fixed anode tube similar to that used in dental panoramic machines. CT uses a fan-shaped x-ray beam from its source to acquire images and records data on solid-state image detectors that are arranged in a 360° array around the patient. CBCT technology uses a cone-shaped x-ray beam with a special image intensifier and a solid-state sensor or an amorphous silicon plate for capturing the image.

Conventional medical CT devices image patients in a series of axial plane slices that are captured either as individual stacked slices or using a continuous spiral motion over the axial plane. Conversely, CBCT presently uses one rotation sweep of the patient similar to that used for panoramic radiography. Image data can be collected for either a complete dental/maxillofacial volume or a limited regional area of interest. Scan times for these vary from 8 to 40 seconds for the complete volume. CBCT has a significantly lower radiation burden than a comparable scan using a conventional CT. CBCT has a favorable risk/benefit ratio for many craniofacial applications, including imaging of the airway and associated craniofacial structures.

ANATOMIC ACCURACY

An ideal imaging goal is to accurately represent the anatomy as it exists in nature, that is, the anatomic truth. The projection geometry associated with 2D techniques does not produce accurate anatomic images. 3D digital techniques using back projection algorithms create the opportunity to produce anatomically accurate images.
Current 3D imaging techniques allow an anatomically accurate capture of the surface and subsurface structures.1–4 One measure of image quality is the ability to detect small anatomic features. The variables that have significant influence on the quality of a CBCT include voxel size (smallest element in a 3D digital image), dynamic range (number of gray levels), signal, and noise. In general, the best quality image is composed of small voxels, large number of gray levels, high signal, and low noise. CBCT voxels are isotropic (equal size in all dimensions x, y, and z) and range in size from 0.1 to 0.4 mm. The captured field of view (FOV) can be scaled to match the regions of interest (ROIs). The ROI can include the entire craniofacial region or a selected subsection of the craniofacial anatomy. The display of the captured FOV or subset of image data can be viewed from any angle using various display techniques (Fig. 2). For example, the entire craniofacial skeleton may be captured using a CBCT scan, but using software tools, an ROI (such as the airway) may be selected, displayed, and analyzed. Several software companies have developed application-specific display and analysis software that result in the measurement (linear, area, volume, angular) of segmented and integrated anatomic structures. Of particular interest is the metric analysis of the airway and the adjacent structures. Specialized software for metric analysis of the airway has been calibrated using orthogonal and oblique airway phantoms, and has been validated for accuracy and precision.2,3 The convergence of CBCT with the application software is very beneficial in understanding and diagnosing OSDB and its relationship to craniofacial anatomy.

FACIAL GROWTH AND THE AIRWAY

Alterations from the normal pattern of nasal respiration occurring during active growth can affect the development of the craniofacial skeleton in humans and experimental animals.5–8 Severely reduced nasal airflow may induce compensations that include an inferior mandibular rest position, parting of the lips, increased interocclusal space, lower or more forward tongue position, lower positioning of the hyoid bone, a modal shift from nasal breathing to mouth breathing, anterior extension of the head and neck, increased anterior face height, increase in the mandibular and occlusal plane angles, narrow alar base, narrow maxillary arch, high palatal vault, posterior crossbite, class II occlusion, and clockwise facial growth pattern. These compilations of craniofacial and occlusal traits produce a facial phenotype that has been cited in the orthodontic literature as “adenoidal facies,” thus ascribing an etiology and expressing a bias that hypertrophic adenoidal tissues are the cause of an obtunded nasal airflow that results in a specific pattern of craniofacial deformation. However, this facial phenotype may also occur secondary to aberrant mandibular growth. The end result in several craniofacial growth scenarios may be associated with alterations in airway dimensions, airway resistance, and functional airway patency, but the cause-and-effect relationships need to be considered. For example, does an anatomic reduction in airway function cause the craniofacial compensations or does abnormal craniofacial growth result in compromised airway function? The anteroposterior dimensions of the airway have been shown to have a proportional relationship to jaw growth and facial growth pattern.9 The airway is largest when there is normal mandibular and maxillary growth and when facial growth pattern occurs with a counter-clockwise rotation. Conversely, the airway is smaller with deficient maxillary and mandibular growth and when there is a clockwise facial growth pattern. Because mandibular growth has been linked to condylar growth and degenerative joint disease (DJD, also known as osteoarthritis) affects condylar growth, it is reasonable to postulate that a developmental onset of DJD may limit airway dimensions (Figs. 3 and 4).
Fig. 2. Craniofacial and airway visualization. Various CBCT and patient visualization options. (A, B) Convex facial profile, narrow maxilla, anterior open bite, and forward head and neck posture. (C) Midsagittal airway (right image) and a standard cephalometric image generated from the CBCT volume using specialized software. (D) Volume-rendered and shaded surface display image of the head and neck skeleton along with the airway-skin boundaries. (E) Analysis of the airway. The midsagittal airway view is mapped (left image), and a series of cross-sectional areas (CSAs) of the mapped regions are generated (right image). The CSA and distance measurements are calculated and displayed for each of the cross-sectional intervals. The smallest cross-sectional area was identified to be 38.94 mm². (F) A reconstructed panoramic projection. The data volume can be reconstructed in any user-defined orthogonal, oblique, or curved plane to match the clinical investigation objective. Note the small condyles and forward posture of the mandible.
Current 3D imaging techniques available for routine imaging provide the opportunity to use a “systems approach” to visualize and evaluate the functional and developmental relationships between proximal craniofacial regions. It has been reported that a developmental insult to the temporomandibular joints (TMJs) may have a regional effect on the growth of the ipsilateral side of the face, including the mandible, maxilla, and base of the skull. Similarly, there is a direct relationship between jaw growth and airway development. The notion that there are functional and growth relationships between adjacent anatomic regions creates the desire for a robust method to visualize and analyze them.

MANDIBULAR GROWTH

The mandible forms by using a combination of endochondral and intramembranous processes of bone formation. The condyles do not control growth of the entire mandible, but condylar growth contributes to the process of mandibular growth, primarily the condylar processes and rami, and secondarily the body and alveolar ridges. Mesenchymal cell differentiation into articular cartilage followed by endochondral ossification contributes to the condylar growth. There are several mandibular growth sites (growth fields), including the condyles, alveolar process, rami, body, and coronoid process. These growth sites have genetic potential for growth through mesenchymal cell differentiation and cell division, but the growth can be modulated through external or environmental (epigenetic) factors. These external factors include neighboring growth sites, hormones, tissue stress and strain, and tissue damage. The craniofacial complex generally grows in harmony. Changes occurring in one area of the craniofacial complex induce a response in the adjacent areas. A model proposed by Petrovic and coworkers suggests that distant craniofacial changes (such as maxillary growth) are transformed into local (mandibular) growth signals by a complex interplay of muscle adaptation,
Fig. 3. Temporomandibular joint (TMJ), facial growth, and airway. A craniofacial phenotype that occurs after a developmental onset of TMJ DJD. The DJD limited or arrested the development of the condyles, and this resulted in reduced mandibular growth along with other craniofacial compensations (F). The condyles were located in the anteroinferior regions of their fossa when in habitual occlusion (F). Note the convex facial profile (A–C), the anterior open bite (B–D, E, F), and the forward head and neck posture. The mediolateral development of the maxilla and mandible was reduced (B, C, E), and the tongue was postured down and away from the depth of the palate. There was diffuse narrowing of the airway with the smallest cross-sectional area measuring 87.19 mm². The forward posture of the mandible may be a compensation to improve airway patency. Selective muscle recruitment is required to resist the clockwise rotation of the mandible and maintain airway patency.
neural input, connective tissue response, blood supply, biochemical growth activation, and suppression. Condylar fibrocartilage, during growth, is responsive to growth stimuli from various systemic and local influences. Ideally, condylar growth is modulated to keep pace with facial growth. Fibrocartilage in the adult condyle has an adaptive function to maintain the mandible in its functional role. Reduced adaptive capacity of the fibrocartilage (such as DJD) during growth and development has been shown to limit growth of the ipsilateral half of the mandible. DJD in adulthood that results in significant hard tissue loss may be associated with a change in mandibular posture, occlusion, and condyle/fossa spatial relationships.

DEGENERATIVE JOINT DISEASE

DJD (also known as degenerative arthritis, degenerative arthrosis, osteoarthritis, and osteoarthrosis) affects all joints, including the TMJ. There are several factors that can initiate the pathologic and imaging features associated with DJD. These factors create a situation whereby the articular structures can no longer resist the applied forces to the joint. DJD involves the destruction of the hard and soft articular tissues, and occurs when the remodeling capacity of those tissues has been exceeded by the functional demands. Therefore, scenarios that modulate and increase joint loads or diminish the strength or adaptive capacity of the articular tissues are of interest in discovering the pathogenesis of TMJ DJD. The understanding of DJD has significantly evolved during the past 30 years. Until recently, DJD of the TMJ was considered a wear and tear phenomenon that occurred in individuals older than 40 years, as observed in other synovial joints. However, recent investigations and clinical observations have discovered significant differences in the occurrence and behavior of TMJ DJD in comparison with other joints. TMJ DJD has been recognized to have a predilection for women and can be identified at all ages after puberty, and is not limited to individuals older than 40 years. It has been suggested that sex hormones and hormone receptors may play a role in the early age onset and sex predilection of this phenomenon. DJD onset
Fig. 4. (A–D) TMJ, facial growth, and airway. A craniofacial phenotype that occurs after a developmental onset of TMJ juvenile rheumatoid arthritis (JRA). The regional compensations to the JRA were similar to those observed in Fig. 3 for DJD. There was a convex facial profile, clockwise facial growth pattern, steep mandibular and occlusal planes, obtuse gonial angles, small mediolateral jaw dimensions, inferior positioning of hyoid bone, anterior open bite, and small airway. The airway dimensions were diffusely narrowed with the smallest cross-sectional area measuring 49.59 mm².
and the associated complaints in women occur from pubertiy through menopause. The TMJ is a diarthrodial joint like other synovial joints; however, the expression of DJD differs from other joints. Key distinctions between the TMJ anatomy and other synovial joints include the predominance of fibrocartilage in lieu of hyaline cartilage and motion mechanics that include rotation and translation. The TMJ is a loaded joint, and the joint loads or stress concentrations (force/area) may be equal to other load-bearing joints. The functional movement of the condyle over the disk creates a contact force (F) applied in a direction ($\cos \theta$) over a distance (d) during a specific time (t) interval. The disk/condyle interactions can be expressed in terms of work (W) or power (P); $W = F \times d \times \cos \theta$ and $P = W/t$. Investigators are currently examining the mechanobiology or single-cell biomechanics, that is, how physical forces influence biologic processes in the TMJ. Single-cell biomechanics depend on their material properties relative to the surrounding matrix. The TMJ disk cells are a heterogeneous mixture of fibroblasts and fibrochondrocytes. The TMJ disk is a fibrocartilaginous tissue, but it is not a homogeneous tissue. The disk is composed mostly of collagen (type I), proteoglycans (glycosaminoglycan chains that are primarily chondroitin sulfate and dermatan sulfate), and water. The distribution and arrangement of the disk components are not uniform. This disk has been divided into 3 areas or zones: the anterior band, the intermediate zone, and the posterior band. These zones, like anatomic regions, create material property differences, and therefore the single-cell biomechanics between these zones may vary. The anatomic variations between the zones ideally reflect a structural relationship to the functional demands in terms of work and power.

The work imparted on the tissues (cells) initiates a mechanotransduction pathway (mechanism by which cells convert a mechanical stimulus into a chemical activity) that results in gene expression. Gene expression initiates several pathways to produce (1) extracellular matrix proteins, (2) matrix metalloproteinases, (3) proinflammatory cytokines, or (4) apoptosis regulators. The extracellular matrix protein

Fig. 5. Tumor; airway encroachment. (A) A soft tissue density extending from the tongue base region and encroaching on the airway space. (B–D) Soft tissue density extending from the right lateral wall of the oral pharynx. This soft tissue encroachment was determined to be a squamous cell carcinoma that had reduced the cross-sectional area to 87.93 mm².
synthesis creates extracellular matrix and tissue regeneration. The production of matrix metalloproteinases and proinflammatory cytokines results in extracellular matrix degradation. Extracellular matrix degradation and apoptosis are pathways that can result in DJD. The variations in mechanotransduction pathways may be related to the tissue anatomy, tissue quality, and power (work/time). Several variables affect work, including peak forces, force vectors, velocity, and work cycles. The tissues’ anatomy and quality will relate to the adaptive capacity of those tissues. Both mechanotransduction and signal transduction by hormones (β-estradiol, relaxin, progesterone) are currently being explored. In vivo testing on rabbits using disk explants has demonstrated that increased serum levels of relaxin, β-estradiol and relaxin, and β-estradiol result in the loss of glycosaminoglycans and collagen from fibrocartilaginous sites (ie, TMJ and pubic symphysis) but not from hyaline cartilaginous sites. Relaxin and β-estradiol induced the matrix metalloproteinase expression of collagenase-1 and stromelysin-1. It was also shown that progesterone prevented

Fig. 6. Inflammatory disease; upper airway encroachment. A patient with severe rhinosinusitis (A). The ostiomeatal units and the nasal fossa were not patent. A polyp was extending into the nasopharynx (B, left image). A discontinuity of the airway spaces of the nose and the oral pharynx (C, left image) (air shown as white).
the loss of matrix molecules. This hormone-induced, targeted matrix degradation may be the key to the understanding of why TMJ DJD is most commonly seen in women during their reproductive years. There is likely interplay between mechanotransduction and hormonal transduction of matrix degradation proteinases during the onset and progression of DJD.

DJD: IMAGING OBSERVATIONS

Current imaging modalities have revealed several stages associated with DJD that progress along a continuum from normal, failure, repair, and stability. It has been observed that soft tissue changes occur first, and this progresses to the involvement of hard tissues in a small percentage of individuals. It has been proposed that DJD progresses until the functional forces (work and power) are modulated by tissue changes to be within the adaptive capacity of targeted tissues.

AIRWAY

3D imaging is a very efficient method to inspect and identify diffuse narrowing (narrowing disturbed over a large distance) or focal narrowing (encroachments) of the airway. A reduction in airway radius increases the airway resistance as described by Poiseuille's law ($R = \frac{8}{\eta l r^4}$) where R is resistance, η is viscosity, l is length, and r is

![Fig. 7. Lingual tonsils; base of tongue encroachment. (A, B) The airway of a patient with large lingual tonsils. The airway at base of the tongue was calculated to be 13.77 mm².](image-url)
radius. Airflow maintenance requires increased inspiration effort as the resistance to airflow increases as described by Ohm's law \(V = \frac{P_{\text{mouth}} - P_{\text{alveoli}}}{R} \) where \(V \) is flow, \(P \) is pressure, and \(R \) is resistance. The increased inspiration effort results in a greater differential pressure between the mouth and the alveoli. The airway, an elastic tube, is

![Image](image_url)

Fig. 8. (A–D) Tumor; upper airway encroachment. This individual was scanned using a CBCT and displayed using multiplanar sections and volume rendering. The condyles were in an acquired anteroinferior position within their fossa. A soft tissue mass was identified, extending from the left lateropharyngeal wall and extending into and enlarging the dimensions of the soft palate. This mass was determined to be a squamous cell carcinoma. The mass had reduced the airway dimensions, and the patient found it necessary to hold the jaw forward to maintain airway patency.
collapsible and is susceptible to the generation of a large pressure gradient between the lung alveoli and mouth. Mobility of the selected airway valves, such as the tongue, nares, soft palate, and epiglottis, may increase under the influence of increased respiratory pressure. Increased resistance in the airway requires a greater inspiratory pressure to maintain airflow predisposing to airway collapse.

Multivariate analysis shows both retroglossal \((P = .027)\) and retropalatal spaces \((P = .0036)\) to be predictive of respiratory disturbance index. Li and colleagues\(^{29}\) have also demonstrated a relationship between the airway area and the likelihood of obstructive sleep apnea (OSA). There is a high probability of severe OSA if the airway area is less than 52 \(\text{mm}^2\), an intermediate probability if the airway is between 52 to 110 \(\text{mm}^2\), and a low probability if the airway is greater than 110 \(\text{mm}^2\).\(^{30–32}\) Lowe and colleagues\(^{30}\) demonstrated that most constrictions occur in the oropharynx with a mean airway volume of 13.89 \(\pm 5.33\) \(\text{cm}^3\). Barkdull and colleagues\(^{33,34}\) demonstrated a correlation between the retro-lingual cross-sectional airway and OSA when this area was less than 4% of the cross-sectional area of the cervicomandibular ring. Encroachments that increase resistance can occur anywhere along the length of the airway and include rhinitis, deviated septum, polyps, tonsils, adenoids, and tumors (see Fig. 4; Figs. 5–8).

SUMMARY

Incorporation of 3D imaging into daily practice will allow practitioners to readily evaluate and screen patients for phenotypes associated with OSDB. This is particularly important in the adolescent population where many already seek orthodontic treatment for dentofacial deformities associated with OSDB.

The introduction and availability of CBCT has created the opportunity to serially examine individuals and acquire accurate 3D anatomic information. The “systems approach” of observing and testing the interactions and influence that adjacent regions have on each other will be a key to the understanding of the biomechanical influences on craniofacial form and the role they play in OSDB.

REFERENCES

